One-Step or Two-Step Optimization and the Overfitting Phenomenon - A Case Study on Time Series Classification

نویسنده

  • Muhammad Marwan Muhammad Fuad
چکیده

For the last few decades, optimization has been developing at a fast rate. Bio-inspired optimization algorithms are metaheuristics inspired by nature. These algorithms have been applied to solve different problems in engineering, economics, and other domains. Bio-inspired algorithms have also been applied in different branches of information technology such as networking and software engineering. Time series data mining is a field of information technology that has its share of these applications too. In previous works we showed how bio-inspired algorithms such as the genetic algorithms and differential evolution can be used to find the locations of the breakpoints used in the symbolic aggregate approximation of time series representation, and in another work we showed how we can utilize the particle swarm optimization, one of the famous bio-inspired algorithms, to set weights to the different segments in the symbolic aggregate approximation representation. In this paper we present, in two different approaches, a new meta optimization process that produces optimal locations of the breakpoints in addition to optimal weights of the segments. The experiments of time series classification task that we conducted show an interesting example of how the overfitting phenomenon, a frequently encountered problem in data mining which happens when the model overfits the training set, can interfere in the optimization process and hide the superior performance of an optimization algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images

Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...

متن کامل

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...

متن کامل

پیش‌بینی خشکسالی هیدرولوژیک با استفاده از سری‌های زمانی

INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...

متن کامل

Hydrological Drought Forecasting Using Stochastic Models (Case Study: Karkheh watershed Basin)

Hydrological drought refers to a persistently low discharge and volume of water in streams and reservoirs, lasting months or years. Hydrological drought is a natural phenomenon, but it may be exacerbated by human activities. Hydrological droughts are usually related to meteorological droughts, and their recurrence interval varies accordingly. This study pursues to identify a stochastic model (o...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014